
MRG-W01 Commissioning & Feature Guide

The MRG module is intended for connection to the main IDRANet network. It receives its power from that
network just like any other wired IDRANet module.

Unlike other modules, the MRG does not presently issue a startup notification after a reset or power up, so
Cortex will not detect the power up. However for some types of error the module WILL issue packets to
Cortex so a representative object is required to avoid ‘unknown node’ reports. The GPC network node object
will be used for this purpose.

In Cortex introduce a GPC object to represent the MRG module (Tools | Design network | Add Idratek
Network Object) and manually assign this object with the unique ID of 2FFB (via its object properties menu).
This is the default NID of an MRG module. Do not Network enable this object

Once the module has powered up, the red LED will be on, the green LED, after a brief flash, will be held ON
until the blue LED comes on (if default settings) to indicate some form of WiFi connection is operational after
which the green LED will turn off.

After any reset the module will always enable it’s ‘Access Point’ mode (AP mode). This means it behaves like
a mini router to which you can connect at a fixed known address. Module settings are accessed via a web
browser. If a WiFi connection has been configured, AP mode will remain enabled for around 10 minutes,
otherwise it will be left on indefinitely until a WiFi connection is configured (see below). AP mode will also
automatically be enabled if an established WiFi connection becomes broken. This provides a way to access
the module directly if not acessible via the main WiFi link. Cortex also provides a utility to manage and
access multiple WiFi modules once they have been connected to a WiFi router.

Step 1 - Connect to the module Access Point:
With the AP mode operational you can access the module directly via your smart
phone or WiFi enabled PC. Visit your phone/PC WiFi settings and look for the
SSID (network name) of the module. Normally this will start with the module type
name followed by a number. Now connect to (join) this network. Some devices
may report this connection to have ‘weak security but don’t be too concerned as
the connection is just temporarily being used for configuration purposes. Now
enter the default AP password, which is either IdratekWFM01 or as labelled on
the module if different.

Step 2 - Connect to and set password for the on board web
server:
Assuming you have successfully joined the module’s AP you will be able to access the on board
configuration web server. To do so you should use a browser on your device and browse to http://20.0.0.1
or as labelled on the module if different.

The initial page will force you to set a password for accessing the module’s web server itself, before allowing
you to proceed any further. Once you have entered such a password you will be asked to enter it again in
order to proceed to the next step.

Step 3 - Change password for the Access Point function:
The next step asks you to change the module’s AP network password. In other words to change it away from
the default value described in step 1. Once you submit the new password the module will reset and you will
have to repeat the joining network process with the new AP network password. When you have rejoined you
can browse again to http://20.0.0.1 and log in.

Home Page:
When you log in you will be presented with the module’s home page. This allows
you to access various module settings and information directly.

WiFi Config
Allows setting up of connections to a router and changing parameters relating to
station or access point modes
IOTA Config
Allows setting up parameters for various communication protocols
Other Tools

MRG-W01
Sep 2023 - 1 -

Other module settings/functions such as enabling/disabling WiFi/activity indicator, setting module name,
firmware updates, and performing soft or factory resets
Info
Display various technical items of information such as module name, firmware versions, RSSI, assigned IP
address etc
Logout
Forces a logout – note that logout will automatically be performed typically after 5 minutes of inactivity

Step 4 - Connect the module to a WiFi router:
Click on WiFi Config. On the next page click on Scan For Network. After a brief pause a list of networks
visible to the module will be presented. Select your router from this list and click Submit. You will then be
asked for the router WiFi password. After this is entered the module will attempt to connect. A message will
appear on your browser asking you to wait for 30s, after which the module will attempt to refresh the page
with information about the success of the connection and the IP address assigned to the module by that
router. At this point the module will be operating in BOTH AP and Station (STN) modes and your browser is
still connected via the AP. If the process breaks the connection to the AP for some reason, then you will still
be able to connect back to it using the WiFi settings on your browsing device as you did at the start. You
may then check if the WiFi connection was in fact successful by observing that the WiFi Config button has
turned blue and/or via the Info page. If not, you can go back to the home page and try again (e.g perhaps
misspelled password).

Once the module has been connected to the main router for the first time it is advisable to perform a soft
reset for good measure - either via the reset button (click once only) or via the Other Tools options. After
such a reset the module usually takes a few seconds whilst connecting to the router after which the blue
indicator LED will come on and the green LED will turn off.

Other Notes
Note: your smart phone may still be connected to the module’s AP even after a reset so you should
remember to disconnect it and rejoin your main router once you have completed such an exercise.

Accessing the module via the main router
You can access the module’s on board web server at any time via the local IP address which was assigned
by the router. If you have forgotten this or it has changed for some reason then, since the AP will be enabled
for a few minutes after a reset, you will be able to access the module via the AP route after a reset and visit
the Info page in order to find this. Alternatively it may be more convenient to utilise the Cortex WiFi module
management utility (Set-up | WiFi Network) which has a process for discovering modules on the main route.

Note that if you are using this or any other IDRATEK WiFi module as part of a Cortex managed network you
do not need to concern yourself with IP addresses unless you wish to access the module web server for
some specific purpose (e.g to perform a firmware update)

Factory Reset
There are two methods to accomplish a factory reset. If the module is accessible via a browser then you can
reach this option via the Other Tools menu. Otherwise the other option is via the physical reset button. If this
is pressed exactly 8 times in quick succession (<1.5s between successive presses) then the module will
perform a memory wipe to factory state. This will be indicated shortly afterwards by the blue LED flashing
slowly until the process is complete (a few 10s of seconds). This will then be followed by a module self reset.

LED indications
Red Led: IDRANet power state
Green LED: Similar to standard IDRATEK modules but if ON implies awaiting the radio section (master
processor) to complete initialisation and establishing a connection to a router or AP mode if none found
Blue LED:
- Steady ON means either the AP is ON or that the module has connected to a router (AP mode will
automatically be switched off after a few minutes).
- If WiFi activity indication enabled (via Module options) then will flash briefly when transmitting data.
- If router credentials have been set but the router cannot be reached then the AP mode will be turned on in
a temporary mode – meaning that the module will continuously try to re-establish a connection to the router
at regular intervals. In this case the blue LED will briefly flash every couple of seconds
- Slow flashing: indicates the initial retry phase after a connection loss to the router i.e before turning the AP
mode back on.
- Slow flashing: After a factory reset request the blue LED will flash slowly for some seconds until the data
wipe is complete

MRG-W01
Sep 2023 - 2 -

Other Tools Menu

WiFi/AP Ind
This button allows you to set whether the blue LED will be illuminated to indicate
status of the WiFi connection.

Activity Ind
This button allows you to set whether the blue LED flashes upon IOTA activity to
and from the module

Module Name
Allows you to set the name of the module for easier referencing. Note that this
does not have any connection with the name that might be given to its
representative object in Cortex

Change Login PWD
Allows you to change the login password (i.e access to these settings pages)

Update Firmware
Firmware updates are presently conducted manually. There is no update version check feature. You will
simply be informed from time to time if there is an update and if so will be informed of a file name to enter in
the relevant field. The updates themselves will normally be transmitted from the IDRATEK server so you will
need to have a route to the internet (e.g you may already be connected via the home router) to access these
when required.

Module Reset
This simply performs a soft reset - as if you pressed the physical reset button

Factory Reset
This clears the entire non volatile memory thus returning the module to its factory state. After such a reset
the module will therefore restart with the default Access Point connectivity only – See Commissioning
instructions at the beginning of this guide. Note: A factory reset may take a minute or so to complete so be
patient.

MRG-W01
Sep 2023 - 3 -

Advanced Topics

IOTA Config

IOTA (IDRANet Over The Air) is the term used to collectively describe both the
communication medium (e.g. WiFi or other non wired channel) and the protocol
that is used to convey information over this. In as much as is viable, the protocol
element is consistent with that used over the wired network, such that
communications between Cortex, wired, and wireless modules can be
consistent and make use of existing integration features.

IDRANet & SubNet IDs
The IDRANet Node ID (NID) is fundamental to distinguishing different modules on the wired IDRANet. It can
be thought of like an IP address and is used to enable the routing of packets to
different modules. Although the WiFi module also possesses an IP address,
communications between modules and even Cortex are still designed to use the
IDRANet protocol so the NID is still an important parameter even for a WiFi
module. The NID is a 16 bit number represented in hexadecimal format (4
characters). The MRG module is a ‘special’ module in the sense that it is acting
as a gateway between Cortex, the wired network, and the WiFi domain. As such
the module has to decide which packets which it see’s on the wired network it
should forward to the WiFi domain and which packets to simply ignore. It makes
this decision based on the nature of the packets. Firstly whether point to point or
broadcast. If point to point then also depending on the target device Node ID – or
more specifically the SubNet ID value (which is the top nibble of the Node ID).
By default the MRG considers SubNet IDs 0-2 as allocated to its local wired
network so it will not forward any point to point packets targeted at such IDs to
the WiFi domain. Conversely, if the MRG see’s a WiFi packet targeted at a
device with an ID in its local wired subnet then it will pass down that WiFi packet
onto the wired network. Whilst these filtering parameters can be altered, it is best to try and stick with the
default convention even if it means changing existing wired module IDs from values above 2FFF

There are 3 main routes for communicating commands to (and receiving data from) the module:

IOTA over UDP
This is a protocol which utilises UDP as the underlying means of communication. It allows direct
communications between WiFi modules, bridged wired segments via IDRATEK gateway modules, and direct
to Cortex (requires Cortex WiFi communications licence option). This is normally the method that is used to
integrate a WiFi module into the wider IDRATEK system via Cortex so it is enabled by default. However if the
module is only being utilised via MQTT or URL API communications then this channel can be disabled.

A non blank UDP group ID can be used to segment groups of modules sharing
the same port number, such that you can operate multiple sub systems on the
same UDP port independently of each other. Modules using a particular group
name will not be visible to other groups. Using a non blank group ID can also
provide an extra layer of security even if you are just operating a single group
since it will make it more difficult for someone to clandestinely discover your
modules even if they have access to the WiFi network.

Setting a different port number is another way to separate systems sharing the
same underlying WiFi LAN. Unless otherwise indicated the default value for the
UDP port number is: 11166

MRG-W01
Sep 2023 - 4 -

URL API Access
It is possible to send commands to the module via a URL format. For those
familiar with it this might be better described as web hooks. Note that this uses a
plain http request so is not a particularly secure communication channel if
operated within a LAN which has public access to the WiFi router. The API
password just prevents serendipitous access to the API, but it does not prevent
someone with scanning tools from discovering the password. So it is best to leave
the API access feature disabled unless you are confident about its usage context.

URL based commands are sent in the following general format:
http://a.b.c.d/IOTA/api/v1/password/xxx...
Where a.b.c.d is the module’s IP address
password is the API password as described above
xxx… represents different command types as defined below:

1. AllInf.json - will cause the module to return a json formatted string to the browser, containing various

items of information and signal states for the module itself.

2. IdrPkt=IDRANet protocol formatted packet (in HEXadecimal ASCII)/
This allows sending IDRANet packets to the wired network segment to which this module is attached.
Knowledge of the IDRANet command structure and addressing is required to utilise this feature but
essentially it is a scope limited form of the command structure used in the Cortex direct command line
method (so can refer to that for some insight). The packet must start with ‘FA’ and adhere to the following
format:

FAxxaabb0400command…

Where xx=91 for a broadcast, 90 for a p2p command
aabb = the NID of the target device if xx=90, otherwise the ZIDTID if xx=91
command = IDRANet protocol command format, e.g. 3E0301 would toggle output 1 on a relay type module.

Example: Let’s assume that the gateway module has an IP address of 192.168.1.10 and let’s say its URL
API password is set to ‘xyz’. Now, let’s say we wish to send a command to toggle output 1 on a 4 channel
QRH relay module which is connected to the wired network to which the gateway is attached, and say this
QRH has a NID of 108A, then you can do this via a browser using the following URL:

http://192.168.1.10/IOTA/api/v1/xyz/IdrCmd=FA90108A04003E0301/

Note that packets which request information from a module will not result in such information being returned
to the browser but may cause returns to the UDP channel.

MRG-W01
Sep 2023 - 5 -

IOTA over MQTT
MQTT is nowadays a well established method for communicating typically low volume low latency
information over TCP/IP. It is also a way to circumvent the routing issue, i.e knowing which IP address to
target a communication to, whether this be on a local area network or across the internet. It is based on the
idea of having a communications ‘broker’ (go between) at some fixed and known URL. This broker then acts
as the data router – in the sense that it can receive and buffer a communication from one device and then
pass this on to another device when appropriate. The two devices both know the fixed URL of the broker and
because the broker is acting as a go between they don’t have to be concerned with working out the end
device’s IP address. Also the method uses what is known as a subscribe/publish model. This means a
device wishing to send some information to interested targets ‘publishes’ this information to a specific ‘topic’
heading which the interested recipients also ‘subscribe’ to. Thus when the sender publishes an item, any
recipients connected and subscribed to that topic will very shortly receive that information via the broker.
Obviously the sender and recipients must have knowledge of the topic names (which are actually typically in
the form of a tree path structure, a bit like folders on a PC). Various rules for topic naming and wild card
options allow some level of targeting to selected groups of devices which might share commonality at higher
levels in the topic path. A full description of MQTT is beyond the scope of this guide. You can find many
helpful guides on the subject via an Internet search.

Connection parameters
Firstly you will need to specify the URL of your MQTT broker. This will not
normally start with http:// as it is not an http protocol. If you are using a 3rd party
broker you will be provided with information on the URL and the port number to
use as well as user account credentials. If you are using an SSL connection to
the broker then you should prefix the provided URL with s:. This is purely a
requirement for the module firmware – it is not a standard convention. An
example of using an SSL URL for a well known public test broker is shown
here. You should then decide on a Topic tree Prefix. All communications sent
via the MQTT channel from this module will then be published to a topic
heading starting with this Prefix. It will also be used as the Subscription topic
Prefix. In other words this module will also subscribe to the Topic tree which
starts with this prefix.

More detail on the Include HEX option can be found in the Textual response
section below.

Enable/Disable MQTT connection
To enable the MQTT connection to the broker click on the button at the top of
the page. If the connection is successful the button will change colour and will say ‘Enabled’. To disable a
connection simply click on this button again to revert to the grey button showing ‘Disabled’. Note: The
connection state is memorised even if you don’t click on the Submit Changes button

Data structures
In general IDRATEK modules are two way communicators. In other words you can both send commands to
them AND receive responses. Responses might be due to a direct enquiry command or they might be auto
generated as a result of some signal change or some other indirect reason (‘Auto Response’ in IDRATEK
jargon). Auto response triggers are user definable on a signal by signal basis for a given module. For
example you might enable an auto response to be generated every time a motion detector changes state, or
if the light level changes by a certain amount and so on. The Radio Gateway Modules (MRG and BRG) are
acting as relays for such messages between the wired and WiFi networks to which they are connected, such
that for example a wired module can send a message out to the WiFi domain where it might then be
captured by another gateway module and then passed down to a second wired network, or indeed such a
message could be captured and acted upon directly by a stand alone wireless module (and vice versa). It is
also possible for such messaging to be utilised by 3rd party applications.

IDRANet raw byte format payloads
It should be remembered that IDRATEK already have a well established integration framework which is
based on the foundation of IDRANet data packets and structures. In order to maintain this framework the
current fundamental implementation of MQTT is based on these structures. So data carried over the MQTT
channel will be in the same format as that used on a wired IDRANet. Whilst this might not be so easily
human readable it allows the existing rich integration structure to be used with minimal intervention. However
to allow open access, the data carried on the MQTT channel is not encrypted (protection is conferred by the
underlying carrier e.g SSL and/or closed LAN network with user credentials for access) so if you wish to use

MRG-W01
Sep 2023 - 6 -

the MQTT data in other ways you are at liberty to decode and interpret the IDRANet command and data
protocol into other formats.

Textual formats
To aid 3rd party application development it is possible to enable a more easily readable format for responses
from wired modules relayed via the module. A HEXadecimal ASCII formatted version of the raw byte
payloads can be enabled via the ‘Include HEX format responses’ option. This version will be published to a
separate Topic channel (see Topics). Note that this is in addition to the raw byte version.

It is also possible to send commands to modules on the wired network in an abridged ASCII HEXadecimal
format. This avoids the need to understand the details of forming a full IDRANet packet and is also easier to
use in 3rd party applications which can only work with ASCII payloads, such as MQTT Explorer. This feature
does not require enabling of any options, just that the Topic and Payloads adhere to particular forms. (See
Sending IDRANet protocol packets … section below).

Topic tree structure
In order to facilitate message targeting in a manner consistent with IDRANet structures, a module will
analyse the target address contained within the IDRANet packet of data which it is preparing to publish. In
the IDRANet protocol there exist the concepts of Point to Point (p2p) and Broadcast (Bcst) targeted packets.
P2p packets are targeted to specific modules on the IDRANet and the target address is specified by a 16 bit
ID (Node ID – NID) unique to each module on a particular IDRATEK system. These IDs are usually assigned
and registered into the Cortex database for a given system at the module commissioning stage. Bcst packets
can be targeted either to ALL modules or to groups of modules depending on the values used in a two byte
(16 bit) address field. In this case the first byte specifies a Zone ID and the second byte a Type ID. A value of
00 for both fields means ALL. Whether the target address is to be interpreted as p2p or bcst is controlled by
a flag located elsewhere in the IDRANet packet structure.

Publish To Topics
So.. before it attempts to publish an MQTT bound packet the module checks to see whether the address
field is to be interpreted as p2p or bcst and then sets up the topic name as follows:
If the packet is p2p then Topic path = Prefix/p2p/SID/NID (where SID is the most significant nibble of the
NID expressed as a byte, and NID is the two byte target module NID value - both in hexadecimal format)
If the packet is bcst then Topic path = Prefix/bcst/ZIDTID (where ZIDTID is a two byte value in hexadecimal
format)
For example say the chosen Prefix is Idr/test/h1 and say a packet is to be sent p2p to a module whose NID
is E06C then the topic to which this packet will be published will be: Idr/test/h1/p2p/0E/E06C. In this same
context if the packet is to be broadcast to a group of modules with ZID=01 and TID=5A then the topic will be
Idr/test/h1/bcst/015A
Note however: The gateway module will not publish to MQTT any packets whose destination is recognised
to be solely within its own wired segment. By default for an MRG module this is defined as p2p packets to
modules which have 0,1 or 2 as the top nibble of their NID value. This means that messages between
modules on the connected wired network and indeed from such modules to/from Cortex will not be visible to
the outside world.

HEX formatted data:
If the HEX ASCII format response feature is enabled then published data packets are also sent to either
Prefix/p2pH/SID/NID or Prefix/bcstH/ZIDTID

AllInf response data:
It is possible to interrogate the module for its own AllInf.json response via MQTT at any time. The resulting
JSON formatted response is sent to Prefix/bcst/AInfJS

Subscribe To Topics
The MRG module will subscribe to the following topics:
Prefix/p2p/00/#
Prefix/p2p/mySID1/#
Prefix/p2p/mySID2/#
Prefix/bcst/#

So for the default configuration and an example prefix of Idr/test/h1, the subscriptions would be:
Idr/test/h1/p2p/00/#
Idr/test/h1/p2p/01/#

MRG-W01
Sep 2023 - 7 -

Idr/test/h1/p2p/02/#
Idr/test/h1/bcst/#

Sending IDRANet protocol packets to modules on the wired domain via MQTT
It is possible for a 3rd party application to send a full (raw byte form) IDRANet protocol packet to the wired
network via MQTT. To do so the Topic must begin with one of the Subscribe To topics listed above and, in
place of the # character, be followed by sub topics which target the desired module or modules. In order for
the Payload to be interpreted as a raw byte format packet the first byte must have the special value of 85 (55
hex). For example say you wish to send a p2p packet to a module on the main network whose NID is 1008.
Say also that the MQTT topic prefix is Idr/test/h1/, then the topic you would construct to send this packet
would be Idr/test/h1/p2p/01/1008. The payload would then be a string of raw bytes, the first of which has a
value of 85, and the remainder adhering to the full IDRANet packet format as used on the wired network.

Alternative Textual Payload Format
An alternative textual payload format can also be used, which looks more like what a user might see if
sending direct command packets from Cortex. This is provided to ease development work since Cortex also
provides some level of insight into IDRANet command syntax.

The construction of the Topic remains as described above but if you then start the Payload with “>IdrCmd=”
then the remainder of the payload will be expected to be just the command section of a packet, in ASCII
HEX format. The reason the full packet is not required is because the address targeting information is
already implicit in the Topic construction.

For example say you wish to send a p2p packet to toggle the channel 1 relay of a QRH module on the main
network. Say the QRH module has a NID of 1008. Say also that the MQTT topic prefix is Idr/test/h1/, then
the topic you would construct to send this packet would be: Idr/test/h1/p2p/01/1008.
Now, instead of using the full raw byte format, the Payload could instead be: >IdrCmd=3E0301/
The gateway module will then internally construct the full raw byte packet using this information together with
some default presumptions. In particular it will default the sender’s NID to have a value of 0000. This is ok for
packets which are just sending action commands to wired modules. If however you are sending an
interrogation command (such as what is the temperature?) then you will need to use a sender’s notional NID
appended to the Payload. See below

Commands which request information from wired domain modules
If a command is sent to a wired module asking for some information, then the wired module needs to know
where to send the reply. When such commands are sent using the full raw byte format the sender’s NID is
included as part of the data in this packet, so the application formulating the raw packet can explicitly control
where any responses are to be sent. However in the case of using the simplified ASCII format method
outlined above the implicit assumption is a sender’s NID of 0000. To override this assumption you can
append a sender’s NID value to the end of command packet using the syntax: /sender’s NID/. The actual
value of the sender’s NID would be chosen like you might chose the unique NID for any module – in other
words something unlikely to be used by any other module and outside of the Subnet ID of the target wired
network. Typically something in Subnet F would be suited - such as FFFB. So as an example, let’s say we
have a wired temperature sensor module whose NID is 101C and we wish to request the temperature value
from this module (the IDRANet Hex command for which is simply 45), then assuming the same MQTT topic
prefix as previous examples we would first construct the Topic as: Idr/test/h1/p2p/01/101C and the Payload
would now be: >IdrCmd=45/FFFB/

The resulting data will be sent in a packet addressed to NID FFFB and would be visible as an MQTT return
to a 3rd party application subscribed to Prefix/# for example, or Prefix/p2p/0F/FFFB if more specific topic
filtering is required. You would then need to know how to decipher the contents of such a packet to extract
the temperature data (outside scope of this document).

MRG-W01
Sep 2023 - 8 -

